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SUMMARY 

In this paper an explicit Lagrangian approach to advective and diffusive term treatment has been derived to 
improve the stability and to reduce the artificial diffusion of a finite difference scheme for 
convection-diffusion equations. This concept is then applied to discretize the convective and viscous terms in 
the Navier-Stokes equations. The pressure gradient and the velocity divergence are discretized by implicit 
finite differences in such a way that the resulting velocity field is exactly discrete divergence-free at all times. 
The stability of the method is shown to become less restrictive as the Reynolds number increases. At large 
time steps the artificial viscosity also reduces and higher accuracy is obtained. Moreover, the present 
algorithm is so devised as to take full advantage of vector computations in view of a possible implementation 
of it on an array computer. The performance of the method is illustrated by the numerical solution obtained 
for the cavity flow problem at high Reynolds numbers. 
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INTRODUCTION 

The unsteady Navier-Stokes equations form a coupled non-linear system of partial differential 
equations that describes the flow of an incompressible fluid. At high Reynolds number these 
equations are difficult to solve. Much success has been obtained by efficiently solving the 
Navier-Stokes equations at low Reynolds numbers, but a great computational effort is still 
required to solve these equations as the Reynolds number becomes large (see e.g. References 1 
and 2). 

Fully implicit finite difference methods for solving transient fluid flow problems are often stable 
for any positive value of the time in~rement .~  Implicit methods, however, require the simultaneous 
solution of a large number of coupled non-linear equations at each time step and consequently 
they become expensive for three-dimensional flow problems. Alternatively, several semi-implicit 
finite difference methods have been developed and used (see e.g. Reference 4). These methods are 
limited by a stability condition on the time step size which easily becomes prohibitively small at 
high Reynolds number; this is the case if, for example, space-centred finite differences are used to 
discretize the convective terms. When upwind finite differences are used, the corresponding 
stability condition is not as restrictive as the one imposed by the use of centred differences, but the 
artificial viscosity thus introduced by the scheme may be orders of magnitude higher than the 
physical viscosity. 
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The method which will be introduced in this paper to approximate the solution of 
Navier-Stokes equations is based on the marker-and-cell method for solving the pressure field' 
and uses a Lagrangian approach on a fixed Eulerian grid system to discretize the convective and 
viscous terms. Some noteworthy features of this method are as follows: 

(a) It utilizes primitive variables, i.e. velocities and pressure rather than streamline and vorticity 

(b) The discrete pressures are located at mesh cell centres while the discrete velocities are 

(c) The resulting velocity field is exactly discrete divergence-free at all times. 
(d) The stability of the scheme depends only upon the viscosity coefficient: at high Reynolds 

number a large time step size is allowed. 
(e) Artificial viscosity still exists but is brought under control either by reducing the spatial 

increments or by increasing the time step size. 
( f )  Most of the required arithmetic operations are independent of each other and highly 

vectorizable for an efficient implementation on vector computers. 

Although this method possesses several important properties, it becomes non-competitive with 
more classical methods at low Reynolds number, since for such problems better accuracy can be 
achieved with smaller computational effort. 

functions. 

located on mesh cell sides. 

CENTRED AND UPWIND FINITE DIFFERENCES 

Consider the following convection-diffusion equation in two space dimensions: 

where, for the time being, the convective coefficients u and u are assumed to be constants and non- 
negative; the constant v is a positive diffusion coefficient. 

Equation (1 )  can be solved numerically in a variety of ways. Any explicit finite difference method 
for equation (1) is of the following form: 

where F is a linear difference operator corresponding to the spatial discretization of the convective 
and diffusive terms. The simplest form for the operator F is obtained when centred finite 
differences are used to approximate the spatial derivatives in equation (1): 

The amplification factor of F is given by 

.f= 1 - I [ a  sin(cc) + b sin (b)] - 2 (d ,  + d,) + 2d, cos (a) + 2d, cos (b), (4) 

where a = uAt/Ax,  b = vAt /Ay  are the Courant numbers, d ,  = vAt /Ax2,  d ,  = vAt /Ay2,  a and fl  are the 
x and y phase angles and I = J( - 1). In order for F to be stable, the time step size must be small 
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enough so that If1 d 1 uniformly for every c1 and f3. In this case6 the required necessary and 
sufficient stability condition is given by 

Inequality (5) shows that method (2) cannot apply efficiently to convection-dominated problems 
(i.e. u2 + u2 $ v), since in that case the time step becomes too small for practical calculations. 

If first-order upwind finite differences are used for the convective terms and centred differences 
for the diffusive terms, the operator F takes the form 

c:+ 1 ,  j-2Cf.j + c:- 1 ,  j c:, j +  1 - 24, j + cf,  j- 1 

Ax2 + AY2 
+ vAt ( 

In this case the amplification factor of F is given by 

f= 1 - a  [ 1 - cos(c1) + Isin(a)] - b [ 1 - cos( p) + I  sin@)] - 2(d, + d y )  + 2dXcos(c1) + 2dycos( p). (7) 

Hence a necessary and sufficient condition to have I f 1  < 1 is given by 

Note that in convection-dominated problems the stability condition (8) is not as restrictive as (5). 
Now the diffusion coefficient can go to zero and method (2) will remain stable with a non-zero time 
step size. This method, however, is only first-order accurate in space, and the truncation error has 
the form of a viscosity term. In fact, when upwind differences are used, a Taylor expansion of each 
term in (2) yields 

ac ac ac a Z c  a2c  a Z c  

at  ax ay (ax2 a y " )  2 k (  a x 2  
- + u - + u -  = v -+- +- A ~ ~ a ( 1 - a ) -  

where HOT stands for 

1 

azc  
-AXAyab---- + Ay2 b(1 axay 

higher-order terms, while the term 

(9) 

represents the numerical diffusion introduced artificially by the use of upwind differences. The 
artificial diffusion term (10) is directionally dependent. Hence, in convection-dominated problems, 
not only will the artificial diffusion prevail over the physical one, but drastically different 
numerical predictions can be obtained due only to different spatial orientation of the com- 
putational grid.' 

The numerical diffusion of an upwind method can be reduced or eliminated when a higher- 
order differencing formula is used (see e.g. References 8-10). Leith's method,' for example, 
introduces no artificial diffusion but may develop large oscillations near sharp fronts;' ' attenuated 
spurious oscillations can also be developed by the method proposed by Leonard." Moreover, in 
convection-dominated problems a severe limitation on the time step is imposed by the restrictions 
on the Courant numbers, which are always required not to exceed unity. 
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EULERIAN-LAGRANGIAN METHODS 

In order to improve the accuracy and stability of the finite difference method (2), let us consider 
again equation ( I )  in the Lagrangian form 

where the substantial derivative d/dt indicates that the time rate of change is calculated along the 
streamline defined by 

~ = u. 
dx dY 
- = u, 
dt dt 

A natural explicit discretization of equation (1 1 )  is simply given by 

I t  is interesting to observe the physical significance of (13). The new c-value at time t , ,  , in ( i , j )  is 
related to thevalueofcat timet,in(i-u,j-h)whichdiffusesinalapsed timeAt."-'3Thus(13)is 
not only a simple algorithm but also accounts correctly for both convection and diffusion. In 
general, however, LL and h are not integers (see Figure 1); therefore ( i -a ,  j - b )  is not a grid point 
and an interpolation formula must be used to define j - b  and its neighbours in equation (13). 
The accuracy, stability, numerical diffusion and spurious oscillations of (13) depend on the 
interpolation formula chosen. 

j - b  and its neighbours is 
bilinear interpolation over the four surrounding mesh points. Let a = n + p and b = m + q,  where n 
and m are the integer parts of a and h respectively and p and q are their decimal parts. Then 

The simplest interpolation that can be taken for calculating 

j - b  is approximated by 

&a,  j - b = (1 - p )  [( 1 - q)c!-n,j- m + qcf-,,j- m - 13 + p [( 1 -4)cf-R - 1 , j -  m + qcf-n- 1 , j  - m - 11. (14) 

Hence the Eulerian-Lagrangian method (1 3) can be written in the form (2), where the operator F is 
now given by 
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The amplification factor of F is given by 

f = [cos(na) -Isin(na)] [cos(mp) -Isin(mp)] 
x [ l  -2d,-2dy + 2d,cos(a)+2dycos(/3)] 
x [ 1 - p + pcos(a) - Ipsin(a)] [ 1 - q + qcos(p) -I qsin(p)]. 

From ( 1  6), after some simplifications, one gets 

Since p and q are positive numbers smaller than unity, the last two terms on the right-hand side of 
( 1 7 )  have a modulus no greater than unity. Hence a necessary and sufficient condition to have 
If1 < 1 is given by 

A t <  [ 2v (A: 7+- A:')]-' . 

Note that in convection-dominated problems inequality (18) is much less restrictive than either (5) 
or (8). This method, though explicit, becomes unconditionally stable in the particular case v =O. 

In order to examine the numerical diffusion introduced artificially by this scheme, each term in 
( 1  3) is expanded in a Taylor series about (i - a, j - b) to yield 

Hence the term 

represents the artificial diffusion, whose coefficients are now proportional to p and q rather than a 
and b. Consequently, since p and q are the decimal parts of a and b respectively, the artificial 
diffusion given by (20) is reduced with respect to the one given by ( 1 0 ) .  Further reduction can be 
obtained by increasing a and 6; that is, either by increasing At or by reducing Ax and Ay. 

Complete elimination of the numerical diffusion can be achieved by using a higher-order 
interpolation formula. For instance, if a biquadratic formula is used to interpolate j -b  and its 
neighbours, then by using n, m, p and q defined as above, one has 

C ! - a , j - b = i p ( l  + p ) [ i q ( 1  + q ) c i - n - l , j - m - l  k +fl-q 2 k  ) c i - n - l , j - m - i ~ ( l - ~ ) c i - n - ~ , j - m + l l  k 

2 k  1 k + ( I  -p2)Ciq(l + q ) c f - n ,  j - m -  1 + ( I  -4  ) C i - n ,  j - m - z q ( 1  - q ) C i - n , j - m +  11 
- 3 ~ ( l  -p)C$q(l + q ) c ! - n + l , j - m - 1 + ( 1 - q  ) C i - n + l , j - r n  

- z q ( 1  - q ) c i - n + l , j - m + l l .  

2 k  

(21) 1 h 

Thus the Eulerian-Lagrangian method (13) can be written in the form (2), where F is again defined 
by ( 1  5) but the interpolation formula is now (21) instead of( 14). In this case the amplification factor 
of F is given by 

f= [cos(nc?)- i sin(na)] [cos(rn/?)- I sin(mp)] 
x [ 1 - 2d, - 2dy + 2d,cos(a) + 2dycos( p)] 
x [I - p 2  +p2cos(c1)- I psin(a)] [I -q2  + q2cos(p)--1q sin(@]. (22) 
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f 2  = [l - 2d, -2d, + 2d,co~(a) + 2d,co~(j3)]~ 
x [l + p Z ( p 2 -  l)( l-COS(~))~] [l + q 2 ( q 2 -  1)(1 -cos(p))']. (23) 

Thus, since p and q are smaller than unity, inequality (18) is the necessary and sufficient stability 
condition also when a biquadratic interpolation is used. 

A Taylor series analysis of (21) shows that all second-order derivative terms cancel out; 
consequently, if a biquadratic interpolation is used, then the artificial diffusion of lowest order will 
not be introduced by (15). In this case, however, there may be some spurious oscillations which can 
be attenuated either by increasing At or by reducing Ax and Ay.  

The Eulerian-Lagrangian methods described above also extend to the case when equation (1) is 
non-linear. In this case the determination of a and b requires that one solves equations (12) in 
which the right-hand sides are known only at time level tk. Therefore it will be assumed that u and 
u do not vary over a time step and equations (12) will be integrated numerically backward from 
time level tk+ to tk by using, for instance, the Euler method. Specifically, the time step Ar is first 
divided into K equal parts of lengths z = A t / K .  Then, at each mesh point ( i ,  j ) ,  equations (1 2) are 
discretized as foliows: 

xo = xi, 

y o  = y j ,  

x s + l  - 

ys+ = y" - z21(xS, y", t, + 1 - sz, c(xS, ys, tk ) ) ,  

- xs - zu(xs, ys, t ,  + 1 - sz, c(xs, y", t k ) ) ,  
(24) 

where c(xs, y", tk) is defined by interpolation. The ending point (x", y") defines (i - a, j - b). In so 
doing, the streamlines, which in general are not straight lines, are better approximated. This 
integration process is relatively fast, especially if performed on a vector machine. Indeed, the 
calculations in (24) are fully vectorizable, since for each s they are to be performed over the entire 
mesh c~nfigurat ion. '~  The present algorithm, however, becomes time-consuming when the 
diffusion dominates the convection terms, in which case there is no need to use the 
Eulerian-Lagrangian approach. 

APPLICATION TO THE NAVIER-STOKES EQUATIONS 
Consider the following two-dimensional Navier-Stokes equations in their primitive variables: 

au a v  
ax ay  
-+ -=0 ,  

where u(x, y ,  t )  and v(x, y, t )  are the velocity components in the x- and y-direction respectively, 
p(x, y ,  t )  is the pressure and v is the kinematic viscosity coefficient, assumed to be constant and non- 
negative. 

In order to solve equations (24) numerically, we introduce a spatial mesh which consists of 
rectangullar cells of width Ax and height Ay.  The discrete horizontal velocity u is defined at the 
centre of each vertical side of a cell; the vertical velocity u is defined at the centre of each horizontal 
side; and the pressure p is defined at each cell centre (see Figure 2). 

A general semi-implicit finite difference method for equations (24) is formulated as  follow^:^^ l 5  
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U i + l / Z .  j 

I, j - l l 2  

Figure 2 

where F is a non-linear difference operator corresponding to the spatial discretization of the 
convective and viscous terms. A particular form for F can be chosen in a variety of ways. Thus the 
finite difference equations (26)+28) form the base for a class of methods (pressure methods) for the 
numerical solution of the Navier-Stokes equations. The specification of F determines a particular 
method. 

For any structure given to F the finite difference equations (26H28) constitute a linear system of 
equations with unknowns u : : : ~ ~ ,  j ,  u;,;: liz and p!,: over the entire cell configuration. This system 
has to be solved at each time step to determine recursively values of the field variables from given 

can be accomplished efficiently if the corresponding linear system of equations (26)<28) is first 
reduced to a smaller one having only the pressure ~ 1 , : '  as unknowns. Specifically, substitution of 
(26) and (27) into (28) yields 

initial data. From a computational point of view, the determination of u:+': /~,  j ,  ui, k + l  j +  1 1 2  and pi, k +  1 

k +  1 k + l  k + l  pf,;:1-2pf,;1 + ~ ! , f ? ~  - F ~ f + 1 / 2 , j - F ~ : - 1 / 2 , j  F ~ : , j + l / z - F ~ f , j - 1 / 2  

A t A y  + - 
@YI2 At Ax 

(29) 

This latter system can be solved, for example, by successive over-relaxation (see e.g. Reference 4). 
Once a value for the pressure has been found for each cell, the corresponding velocity field is 
determined uniquely from (26), (27). One then proceeds to the next time step. 

Of course, if the calculations are to be performed using an array computer, a classical red/black 
ordering (or a more general multicolour ordering16) of the pressure equations is suggested, since 
such an ordering allows an efficient vectorization of each iteration. In this way, since the most 
expensive steps of the method (i.e. the evaluation of Fu and Fv,  and the pressure iterations) are 
based on vector computations, a relatively high performance of this method is expected. 

+ P i +  1, j -  2Pi. j + P i -  1, j 

@ X I 2  

STABILITY O F  THE METHOD 

Owing to the difficulty in obtaining stability limits for non-linear finite difference equations, our 
stability analysis for equations (26)<28) will be derived under the assumption that F is a linear 
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difference operator. Lct.f'=,f(At, a, f l )  be the complex amplification factor of the linearized operator 
F .  A necessary and sufficient stability condition for the finite difference equations (26)-(28) is given 
by the following theorem.Is 

Theorem 

The pressure method (26) is stable in the von Neumann sense if, and only if, I,f(At, a, /?)I < I 
uniformly for every a and {I. 

Proqf': Upon substitution of the Fourier modes to each field variable into the finite difference 
equations (26)-(28), one has 

where U k ,  Vk and Pk denote the amplitude functions of u, v and p at time level tk. Equations 
(30)--(32) can also be written as 

Substitution of (33) and (34) into (35) yields 

,f [:: -sin ' (4) ~ +-sin 1; . (31 - =21HAtPk+', 

where H is given by 

sin2 (a/2) sin2(P/2) 

AY2 . 
H=- + 

Ax2 

By using (36), equations (33) and (34) become 

or, in matrix notation, 

(36) 

(37) 

(38) 

(39) 
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where the amplification matrix A is given by 

A = [  - 1 sin2(@) sin(cl/2) sin (/3/2) 
f-f,,x, -' HAxAy 

The eigenvalues of A are I l  = 0 and I ,  = f respectively. Hence, since A is a normal matrix, If I d 1 is 
a necessary and sufficient stability condition for (26)<28). 

The above theorem implies that the pressure gradient and the velocity divergence discretization 
do not affect the stability of (26)-(28). The stability of this method is determined only by the linear 
difference operator F, that is, by the particular discretization chosen for the convective and viscous 
terms: any stable difference operator F for a convection-diffusion equation (1 )  also applies to 
(26)-(28) to define a stable method for the Navier-Stokes equations. Specifically, if F is given by (3), 
thg resulting algorithm is second-order accurate in space and will be stable when inequality (5) is 
satisfied; hence this method cannot apply for high-Reynolds flow. If the first-order upwind 
formula (6) is chosen to define F ,  the corresponding stability limit on the time step is given by 
inequality (8), but a large amount of artificial viscosity will be introduced at a high Reynolds 
number. 

A drastic improvement in the stability and accuracy of method (26)<28) can be achieved by 
using for F the Eulerian-Lagrangian form (1 5). The stability condition is simply given by (1 8) in 
both cases when a bilinear or a biquadratic interpolation is used. Inequality (18) becomes less 
restrictive as the Reynolds number increases; consequently, a larger time step or smaller space 
increment will be used to reduce the artificial viscosity in the first case, and the spurious 
oscillations in the second case. 

Although inequality (18) on At is sufficient to a p r e  the stability of the method, for accuracy we 
will impose a limitation on T. Specifically, at each time step t k  the time subdivision T will be taken 
small enough so that the corresponding Courant numbers will not exceed unity. That is, 

Note that when the bilinear interpolation is used, inequality (41) is also sufficient to assure that the 
streamlines approximated by (24) will not cross the solid boundaries. Assume, in fact, that the line 
x = 0 is a solid boundary and that (x", y"), x" > 0, is a point that lies inside a cell (i, j )  of the 
computational domain. If x" 2 Ax, then, by (24), inequality (41) implies lxS+ - xsI d Ax and hence 
xS+'  2 0. If x" < Ax, then cell ( i , j )  has the left vertical side on the boundary and hence uf- = 0 
for all j .  In this case from the first equation (24) one obtains 

T 
X" - xs+ 1 = (x", y") = X" - - [(l - x") ~ ~ ( 0 ,  y") + xSuk (AX, y")] 

Ax 

Hence in no case will the streamline approximated by (x', y'), s = 0, 1,2, . . . , K ,  cross the solid 
boundary x = 0. 
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CAVITY FLOW PROBLEM 

To emphasize the more important aspects of the Eulerian-Lagrangian method, we consider here 
the familiar time-dependent cavity flow problem. A square cavity whose top wall moves with a 
uniform velocity uT = 1 is filled with an incompressible viscous fluid whose kinematic viscosity 
coefficient is v = 0.001. At the initial time to  = 0 the fluid is at rest, that is u(x, y, 0) = ~(x, y, 0) = 0. 

The flow domain was divided into 50 x 50 finite difference cells of equal sides Ax = Ay = 0.02 
and the numerical solution of (24) has been generated at time t ,  = kAt. For such a small viscosity, 
centred differences (3) impose a limitation on At which cannot be larger than 0.002. On the other 
hand, the upwind differences (6)  may allow the time step to be about At = 0-01, but the artificial 
viscosity coefficients can be as large as 0.005, that is, five times higher than the physical viscosity. 
By using for F the Eulerian-Lagrangian form (15) with a time step Ar = 0.1, a very accurate 
solution has been obtained in relatively short computer time. Figures 3 and 4 show the computed 
velocity direction at times t = 10 and t = 100 respectively (cf. Reference 1). At each mesh point the 
determination of a and b has been performed by using (24) with K = 10. 

In a second example we consider the cavity flow problem described above but with the viscosity 
coefficient v = 00001, which corresponds to the Reynolds number Re = 10000. In order to 
capture various secondary vortices, the square cavity was divided into 100 x 100 finite difference 
cells of sides Ax = Ay = 0.01. Again, starting from rest and by using At = 0.1 and K = 10, the 

Figure 3. Re = lO00, t = 10 

Figure 4. Re = 1O00, t = 100 
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Figure 5. Re = 10000, t = 100 

numerical solution at time t = 100 was obtained in only 3.5 min of CPU time on a CRAY XMP- 
48. Figure 5 shows the computed velocity directions at t = 100. These compare relatively well with 
the very accurate steady-state results reported in Reference 6. Here the linear system of pressure 
equations was solved at each time step using SOR with a red/black ordering. Although the specific 
FORTRAN program used to run the above example, for clarity, did not use diagonal storage of 
matrices, each internal loop was naturally vectorized by the Cray Fortran Translator, and high 
performance was achieved. For comparison, a run with the vectorization inhibited indicated that 
this algorithm becomes over four times slower, while the same code on a VAX 750 used 16 h and 
18 min of CPU time to run the same problem. 

CONCLUSIONS 

A Eulerian-Lagrangian finite difference method for the Navier-Stokes equations has been 
analysed. At high Reynolds numbers the stability condition becomes less restrictive and the 
numerical viscosity, introduced artificially by this scheme, is demonstrated to be reduced at large 
time steps. Thus the method permits the use of larger time steps with corresponding improvements 
in both efficiency and accuracy. The numerical algorithm is so devised that it can be easily 
vectorized for efficient use on modern high-speed array computers. Further improvements in the 
accuracy of the present method can be achieved when it is used in combination with a multigrid 
technique. 
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